Education ∪ Math ∪ Technology

Year: 2018 (page 2 of 2)

Open Source Curriculum

I know of people who are proud that they do not use a textbook and that they eschew all formal curriculum resources. I used to be one of those people but no longer.

If we define curriculum broadly as a collection of physical and digital resources that are used to support teachers with students in their classrooms, then every teacher has curriculum. The quality and quantity of that curriculum just vary.

A collection of resources found via Pinterest

 

The primary problem with a lack of access to curriculum is that every teacher in this situation is then left to invent their own resources to use with students. While I think many teachers are capable of doing this, almost no teachers actually have enough time to create really high quality resources for every lesson. I have been working on a set of interleaved, spaced, retrieval practice assignments aligned to our Algebra I curriculum and after a dozen or so days working on these assignments, I am about half-way done. These resources are for one small part of a collection of resources intended to support students across a year of Algebra I and are by no means perfect. How long do you think it would take a teacher to create all of the resources necessary to teach Algebra I? And why do we expect thousands of people who teach Algebra I to do so much duplicate work?

Further, almost all resources made benefit from additional eyes looking at them. About half the time when I share a resource via Twitter, someone finds some way of improving that resource. Here is an example of me sharing a collection of resources via Twitter and asking for feedback.

 

A few people who have used these resources have offered suggestions or found minor errors and we use that information to iterate on and improve the original collection of resources. If you can imagine this effort scaled up so that thousands of teachers are each iterating on and improving the same original set of curriculum resources, very quickly the diversity and quality of those resources would far outstrip what any individual teacher could create.

Here is an open-source content management system that has 23362 modules and 1642 themes each one representing many dozens of hours of work from individuals. As a collection, this project represents millions of hours of effort devoted to one project with the fruit of that labour available for free anyone who wants it. Where is the similar effort for curriculum?

Illustrative Mathematics and New Visions for Public Schools are creating curriculum licensed under a Creative Commons license but neither yet has a good mechanism that allows sharing of modifications of curriculum back to the greater community. I’m not even sure exactly what they would look like.

If you were designing a system to allow users to build curriculum collaboratively in the same way the open source software movement allows for thousands of people to collaborate on software, what would it look like? What would you want it to be able to do?

 

Here are some thoughts I have so far:

1. It would be nice if formatting of the resources was a consideration of the technology. We have our resources created in Google Docs, which allows for easy formatting and sharing but Google Docs is proprietary and given Google’s tendency to turn off services, even popular services, this could be problematic.
2. People need to be able to easily create their own copies of resources (or even branches of curriculum) and share them back to the community and these revisions should be easily visible for people looking at a particular resource. Benjamin suggests some additional detail around this idea here.
3. People should be able to comment on resources, either to share their experiences using a particular resource or to suggest modifications.
4. It would be nice if resources could have additional or supplemental resources added to them, like videos of a resource being used in a classroom or pictures of student work. Obviously this raises issues around student privacy which suggests that this community would need some agreed on rules of how student work is anonymized or scrubbed of identifying student information.

 

The Great American Teach-Off

I’m part of the design team for Chalkbeat’s Great American Teach-Off and I’ll be coaching one of the pairs of math teachers.

From Chalkbeat:

The event, to be held in March at the SXSW EDU conference in Austin, Texas, will build on live-format shows that celebrate the hidden craftsmanship in other professions — think Top Chef, Project Runway, and The Voice — minus the competition. You can read more about the Teach-Off here.

The goal of this event is to highlight teaching as an intellectual activity and to make visible the invisible decisions that teachers constantly make when they teach.

If you wanted insight into teaching decision-making, who would choose? Which of these pairs of teachers would you like to learn more about their teaching?

Check out these really reflective teachers and help decide who will get their decision-making made visible for the world!

 

Quiz Banker

Last year, I created a prototype of a tool that takes Google Documents linked from a spreadsheet and merges them together. During the summer, Frandy and Erik from our Data and Systems team along with some other members of the Cloudlab team at New Visions for Public Schools upgraded the tool into a Google Sheets Add-on. We gave it the name Quiz Banker.

 

The goal of this work was to take a repetitive task that almost all NY State public school math teachers do, which is to merge and typeset items from Regents exams, and greatly reduce how long this task takes, thus saving teachers time to do other more important tasks. We can easily typeset Regents questions centrally at a fairly low cost, and then a tool like Quiz Banker makes it easier for teachers to work with those typeset questions.

During the summer we asked teachers how long it would normally take them to take all of the Regents questions associated with a particular domain of mathematics and typeset them into the same document. Answers from teachers ranged from 5 minutes to 8 hours with most teachers estimating about an hour. When we demoed Quiz Banker, it took 2 minutes to accomplish this task, including the time spent installing the add-on.

During the summer suggestion I told teachers, “If it used to take you 40 minutes to create a quiz and now it takes 2 minutes, use those 38 minutes you saved to make sure that quiz assesses what you want it to assess.” As Patrick Honner notes frequently on his blog, not every Regents question is of equal quality.

Having a question typeset also means you can easily modify a multiple choice question into a more open-ended question, modify the language of a question to get a slightly different mathematical idea, or just increase the font-size so that students with differences in visual processing are able to read the question.

QuizBanker also includes meta-data like what Common Core Domain, Cluster, and Standard to which each question is aligned as well as alignment to the Units and Big Ideas in the New Visions’ Math Curriculum. This further reduces how long it takes teachers to aggregate those questions usefully.

Quickly filtering for question type

 

More broadly I believe that if teachers are going to work on changing their teaching, this takes time, but time is a fixed quantity. The cheapest way to give teachers more time to work on improving their teaching is to take repetitive and time-consuming tasks they do and change the amount of time spent on these tasks either by eliminating those tasks altogether or by reducing how long the task takes to do.

What other tasks do you see math teachers doing frequently that could save time if there was a tool that made that task easier and faster to do?

 

Approximating Teaching Practice

When someone is learning a new practice, it is common to isolate that practice from other elements of the greater body of work they are also learning. For some areas of learning, this is easier to do than others. For example when learning how to play the piano, one can reasonably easily practice scales and parts of songs and then integrate those parts into the whole.

In learning teaching however, since every practice is connected to other teaching practices, it can be extremely challenging and potentially unhelpful to isolate individual teaching practices. For example, you cannot really get better at the 5 Practices (summary, book) without considering how those 5 Practices interact with each other. If you anticipate student ideas for an upcoming lesson, you will only get feedback on that anticipation if you also monitor what students do.

One strategy to reduce the complexity of learning to teach is to approximate teaching practice in various ways. Instead of teaching a whole class of students, one can teach at one table. Instead of teaching five classes of students a day, one can teach one class. Instead of teaching on one’s own, one can co-teach with a mentor teacher.

Another approximation of teaching we have found helpful in our work is the use of an instructional rehearsal, which is where one teacher (or perhaps a pair of co-teachers) leads the group in a teaching experience with everyone else playing the role of students. At either strategic instances or on request of the teacher(s) leading the experience, the action stops and everyone considers teaching practice either together or in small groups.

Rehearsals: A common practice in many disciplines

 

It is helpful for one person to act as the facilitator or coach for this experience, and for the rest of the participants to switch between playing the role of students while the teaching experience is in action, and to discuss the teaching as teachers when it is not. If each rehearsal has a different focus, then one can learn different elements of teaching over time, while still maintaining the complexity of teaching. The goal is for the core practices of teaching to become integrated rather than overly isolated. The Teacher Education by Design website has more details and resources for instructional rehearsals here.

A further design element of instructional rehearsals is that the activity to be rehearsed should be fairly clear for participants. We use instructional routines as the frame for our rehearsals because they constraint the scope of potential decisions to be made and subsequently discussed but are still complex enough examples of teaching to allow for different foci or teaching practices to be discussed in different rehearsals. We typically model an instructional routine a few times for teachers, unpack it collaboratively, then teachers plan around a task for the instructional routine, and then rehearse the instructional routine one or two times as a whole group.

Rehearsals can be places to discuss planning processes and protocols that might be necessary pre-steps to improve the enactment of a performative teaching practice. For example, while considering how to annotate a student strategy during a rehearsal, participants will likely realize that practicing different annotation strategies in advance of a lesson would be helpful and that in order to do this, one should first anticipate the student strategies that are likely to emerge for a particular.

We have found rehearsals to be helpful for teachers at all stages of their career, since all teachers have room to grow and to learn. The foci of the rehearsals for pre-service, early career, mid-career, and late career teachers may be different but the overall process is the same.

One other key idea of rehearsals: the goal is rarely to give the teacher leading the rehearsal feedback although that often happens but to collaborate together to consider teaching. The goal is to collectively improve teaching practice not individual teachers.

Rehearsal is not a replacement for working with a mentor teacher over time to learn ways to communicate with parents and other critical aspects of the role of a teacher. Some elements of teaching practice are hard or potentially impossible to rehearse. However the performance aspect of teaching is where most teachers will spend at least half of their time, and rehearsals are a good strategy for developing performative teaching practice.

 

 

References:

Kazemi, E., Franke, M., & Lampert, M. (2009). Developing pedagogies in teacher education to support novice teachers’ ability to enact ambitious instruction. In Crossing divides: Proceedings of the 32nd annual conference of the Mathematics Education Research Group of Australasia (Vol. 1, pp. 12-30).

Knowing Teaching from the Inside Out: Implications of Inquiry in Practice for Teacher Education. (1999). In G. A. Griffin (Ed.), The education of teachers (pp. 167-184). Chicago, IL: NSSE.

Lampert, M. (1990). When the Problem Is Not the Question and the Solution Is Not the Answer: Mathematical Knowing and Teaching. American Educational Research Journal, 27(1), 29-63. doi:10.3102/00028312027001029

Lampert, M. (2009). Learning Teaching in, from, and for Practice: What Do We Mean? Journal of Teacher Education, 61(1-2), 21-34. doi:10.1177/0022487109347321

Lampert, M., Franke, M. L., Kazemi, E., Ghousseini, H., Turrou, A. C., Beasley, H., . . . Crowe, K. (2013). Keeping It Complex: Using Rehearsals to Support Novice Teacher Learning of Ambitious Teaching. Journal of Teacher Education, 64(3), 226-243. doi:10.1177/0022487112473837

Lampert, M., & Graziani, F. (2009). Instructional Activities as a Tool for Teachers’ and Teacher Educators’ Learning. The Elementary School Journal, 109(5), 491-509. doi:10.1086/596998

Mcdonald, M., Kazemi, E., & Kavanagh, S. S. (2013). Core Practices and Pedagogies of Teacher Education: A Call for a Common Language and Collective Activity. Journal of Teacher Education, 64(5), 378-386. doi:10.1177/0022487113493807