Participation in math class

Nothing you can do can guarantee that every child actively participates in your math class but there are some things you can do to increase the odds.

Source: Wikipedia

Source: Wikipedia

In a typical classroom a teacher asks a question, a student responds, the teacher indicates whether the response is incorrect or correct, and this is repeated until the class discussion is over. If this is the only type of interaction a teacher has with their students, this can be problematic.

  1. It’s very difficult to keep track of who has participated and who has not which often leads to skewed participation in the conversation.
  2. It’s impossible to know how each child understands the mathematical ideas being discussed.Here’s an example Dylan Wiliam uses to illustrate this point: If a teacher asks four questions in a row of four different children and the responses to the first three questions from children are incorrect but the fourth is correct, the only thing that can be concluded is that the fourth child was able to answer that question but what is typically concluded is that the class understands and so the teacher moves on.Unfortunately, and I myself am guilty of this many, many times. All too often we stop questioning when we get a correct response.

Fisher and Frey (2007) say the following on this matter:

“I’ll ask the questions,
a few of you will answer
for the entire class,
and we’ll all pretend
this is the same thing as learning.”

But what can we do differently? How can we minimize this kind of interaction? Note that it is probably not possible to completely eliminate these types of interactions, nor would it necessarily be advisable to do so, but there are some ways to reduce their impact on a classroom.

Turn and talk:

Prompt students to talk to each other about a question while you circulate and listen for responses (and hold students accountable for talking about what you want them to talk about). Come back to the whole class and ask a few people to share responses. This has the benefit of increasing the chance every student shares an idea with at least one person and increases the amount of time students have to process and think about the question.

Wait time:

The average amount of time teachers wait for a response after asking a question is less than one second. Just delaying this to five seconds (or even more sometimes) increases the amount of students who have time to process the question, think about it, and then formulate a response.


Instead of posing a question and waiting for one response, pose a question and ask students to, either individually or with a small group, construct a response that they can share on their whiteboards. This way you can walk around and see what ideas students have and every student has an opportunity to take their time to think about the question.

Use student generated questions:

There is some evidence that students do better when they own their learning. Having students generate questions they have and allowing students to answer each other’s questions (perhaps initially mediated by you) or you to answer questions they have, gives students more control over their own learning. Of course, students are often not used to this kind of interaction and will likely need support of some kind in generating questions.

Start with the problem:

It is extremely common to start class with a somewhat interactive description of how to solve a problem, give students opportunity for guided practice with lots of feedback, followed by independent practice, followed by a summary by the teacher or a student of what was learned that day. In this case, any questions that are asked within the context of the entire class can only really happen either during the initial describing of how to solve the problem at the beginning of the class or during the summary at the end.

An alternative to this approach is to start with a problem where you can be reasonably sure all students understand what the problem is and what they are trying to find out. Now when you initiate any full group discussion, students are much more likely to have questions and the answers to these questions are much more likely to be understood by everyone.


Note that I’m not a fan of cold calling students. With some students, having a teacher who cold calls raises their anxiety, making it more difficult for them to think about the mathematics. It might be a useful technique once you know every student feels comfortable and has something to say.


What other strategies can you use to encourage participation (even non-verbal participation) in your classroom?


Why is it important for students to talk to each other in math class?

Why should students talk to each other in math class anyway? I was asked this question recently and I’m trying to avoid a tautological answer (eg. it’s important because it’s important). In a classroom where students speak to each other about mathematics, the ideas of those students are valued instead of ignored or potentially marginalized. […]

Coherent conversations about teaching

Imagine four teachers each of whom teaches in different schools in a different context. Even if they all teach the same course, their individual teaching looks different. If these four people come to talk together, they will find it challenging to have a conversation since the way they are teaching is so different from each […]

Apps for the math classroom

Here is an incomplete list of companies making apps for the math classroom. As far as I know, every application made by these people is fantastic. The NY Hall of Science has recently published a series of science and math apps for the iPad. Motion Math has some great low-cost math apps. DragonBox has 4 […]

Working differently

This summer I’ve been doing a lot of task-based curriculum development on a series of fairly short activities. We are trying to develop resources for use with an instructional activity created by Grace Kelemanik and Amy Lucenta called Contemplate then Calculate. A key part of this instructional activity is surfacing the kinds of things people […]

Four blog posts about using student ideas

I wrote four blog posts for NCTM’s Mathematics in the Middle School blog on using student work to understand and plan around student ideas. Each post is about using student work to make inferences about how they understand mathematical ideas and then using those inferences to help you plan. Note that these posts are actually […]

Learning at Conferences

This year when I attended the NCSM and NCTM annual conferences, I had a much different experience than in previous years. I thought it would be worth sharing some ideas I have about how to make it more likely that you learn from a conference experience. If you want to walk away from the conference […]

From Mistake-Makers to Sense-Makers

Here is a video of a short talk I gave on my journey from primarily viewing students as mistake makers to viewing them as sense-makers.      

Teaching Demonstration

This video is a brief demonstration, about 15 minutes, of some teaching I did at the 2015 New Jersey Association of Mathematics Teacher Educator meeting.   Unfortunately, the video tracking is not great so much of the annotation I was doing of the participant ideas is not easy to see as I am doing it. […]

NJAMTE Keynote

This is a recording of a keynote I gave at the New Jersey Association of Mathematics Teacher Educator (NJAMTE) annual meeting.   The audio isn’t terrific unfortunately but it is manageable. The slides, script, references, and resources are available here.