Education ∪ Math ∪ Technology

Month: April 2009 (page 1 of 1)

Geogebra Open Presentation writing

Google Docs has a really cool feature I’d like to try out.  The idea is that I have a presentation on Geogebra that I would like to host.  There was a lot of interest before, and unfortunately I had to cancel, but I’d like to try again.  I’m not a Geogebra expert however, just an enthusiastic intermediate level user.  I’d like to create a presentation for beginners to use, but don’t want to miss anything important.

That’s where you come in, if you are interested.  The idea is, I’ve created a presentation, which you can access at:

You can contact me through an online form at and ask for permission to edit the presentation, and I’ll send you an invitation.  You’ll have to start by creating an account at, but that’s pretty easy to do.  Once you have the invitation, you can edit/add to/delete from the presentation.  I’ve started with a basic structure, but there’s obviously lots of room for improvement.

Here is what we have so far:

Summary of ETEC 533

So my ETEC 533 course has wrapped up, and it ended up being very enjoyable, although a lot of work.  We have just finished our group assignment which includes an online portion, and an essay which justifies the choices we made in creating our online resource.

In this course we started by reviewing the theory behind using technology to when teaching mathematics and science.  We came to similar conclusions as in my other courses in the MET program,which is that basically teaching the technology should not be the goal when using it to teach other subject areas, and that one has to have a good lesson and justification for using the technology in order to make it work.  We also noted that most teachers lack the training they need to effectively use the technology they are increasingly provided.

Our next unit involved looking at three different types of technology enhanced learning experiences.  We tried out the Jasper series of videos, in which real-life problems are presented using video technology, which an advanced queuing system.  We were also shown the Web-based Inquiry Science Environment (WISE) system developed at the California University at Berkeley, which provides a framework for creating lessons and interactive activities online.  The final activity of this unit allowed us to explore My World, formerly called WorldWatcher, which allows students to analyze real-life geographic data.

The last unit of the course saw us look at a variety of different learning technologies, including visualization software (like Geometer’s Sketchpad), networked communities (like Second Life and a virtual field science lab), and finally hand-held technologies (like mobile phones and data probes attached to graphing calculators).

Two common threads through-out the course were the need for advance preparation for all of these technologies, and the wider world that is made available in the classroom through the use of these technologies.  Many of these technologies are expensive, and so only the richest of schools can afford to use many different technologies in their classrooms, and so part of this course is about deciding which technology suits the situation and the specific curricula being developed.

A third thread was the ability these technologies often provide social affordances in the learning of the students, and for constructivist learning principles to be applied.  Using this learning principle does not require much tailoring of the technologies we looked at in this course.

In general this course was very useful and interesting.  It was a lot of work, and I can’t say it was made any easier by the passing away of my father mid-course, or the operation I ended up needing to have at the end of the course, OR the full back-up I had to do which deleted the original version of this essay.  Despite all of those personal problems, I still think I learned a lot from this course, and was introduced to a lot of resources, some of which I hope to use again in my own teaching.

What about using hand-held devices in education?

iPhone in Education - http://apple.comAs Dede, C., Salzman, M.C., Loften, R.B., Sprague, D. (1999) suggest, hand held devices can be powerful tools for education, when used appropriately.  Dede, et. al. (1999) indicate that the devices allow for subjects to be "immersed" in the learning, be provided with "spatial…[and]…multisensory" cues, be motivated by the use of the technology, and finally feel "[a] sense of presence in a shared virtual environment" (Loftin, 1997).

However, the use of hand-held devices has yet to see any significant impact in secondary schools, at least as far as my personal experience goes, except in a small section of the curriculum.  This is partially due to a lack of funding in education, particularly for technologies which lack a proven track record at the secondary school level, and partially because of ignorance on the part of many senior educators as to the capabilities of the hand-held devices.

Two obvious exceptions to this minimal use, which are widely used across the affluent world, are graphing calculators and digital data collectors.  In my teaching experience, the school without graphing calculators is becoming very rare.  The use of digital data collectors has become so wide-spread that there is an entire physics modeling curriculum devoted to their use out of the University of Arizona (Hestenes, D., Jackson, J., 2003).

Devices which have multiple uses, and are generally considered ‘entertainment devices’ are seeing much less use in classrooms.  In this category, I include cellphones, music devices, personal organizers, and other analogous devices.  The reasons for this are, I think, obvious.  Simply put, educators have enough problems with classroom management these days without introducing another element of difficulty, and so many schools have banned the use of these types of devices, a notable example being the New York City department of education (Clark, A.S., 2006).

The educational value of the second of these type of devices is still being investigated.  Dede, et. al. (1999) argue that when used appropriately, these types of devices can have a tremendous impact on the learning of students, but that when used inappropriately, are little more than distraction devices.

Time will tell if these devices end up having a wide-spread use in education, but my personal suspicion is that they will join the ranks of the other media devices which have been used in schools (radios, etc…) and most schools will not use these devices to their whole potential.

Clark, A.S. (2006) School Cell Phone Ban Causes Uproar. Associated Press. retrieved on April 3rd from

Dede, C., Salzman, M.C., Loften, R.B., Sprague, D. (1999). Multisensory Immersion as a Modeling Environment for Learning Complex Scientific Concepts. Computer Modeling and Simulation in Science Education

Hestenes, D., Jackson, J. (2003). A Critical Role for Physicists in K-12 Science Education Reform. Arizona State University.

Loftin, R.B. (1997). Hands Across the Atlantic. IEEE Computer Graphics & Applications 17 (2), 78-79.