Education ∪ Math ∪ Technology

# Year: 2021(page 1 of 1)

Formative assessments are tasks selected by educators intended to help them gain insight into what children can do, know, or believe. Formative assessment is “the process used by teachers and students to recognise and respond to student learning in order to enhance that learning, during the learning” (Cowie & Bell, 1999 p. 32).

Formative assessments are tasks done by students. Formative assessment, the process, has educators clarify the learning intentions with students, activate students as owners of their own learning, activate students as resources for each other, elicit evidence of student learning, and provide opportunities for feedback that move the learning forward (aka. The five formative assessment strategies from Wiliam, D., 2011, Embedded Formative Assessment).

Formative assessments require a careful distinction to be made between the purpose of the assessment; if an educator uses the assessment to evaluate the student and creates grades from the assessment it’s actually summative. If they use the information to modify their instruction, the assessments are formative. Formative assessment, the process, requires no such distinction.

Formative assessment, the process, has a rich set of research that supports how it improves the learning conditions for students. Formative assessments, by contrast, sometimes end up with teachers having their vitality sucked from them as they pour over spreadsheets full of numbers but no insights trying to figure out how to improve student learning.

Formative assessment can be embedded in everyday instruction so that action can be taken immediately whereas formative assessments nearly always require educators to set aside time to give the assessments and time later to look at the results.

Formative assessments are an important dimension of formative assessment (since they do provide an opportunity to elicit evidence of student learning), but the full set of formative assessment practices have a far richer impact on student learning.

In physics, there is a limitation on the measurement of particles called the Heisenberg Uncertainty principle. The principle says, “the position and the velocity of an object cannot both be measured exactly, at the same time” (source). The reason why is that the act of measuring the position of a particle changes the uncertainty in its velocity and the act of measuring the velocity of a particle changes the uncertainty in its position. The more precisely we measure either quantity, the greater the uncertainty in the other. The critical idea is that by observing a particle, we introduce uncertainty in what we can know about the particle because the act of measurement changes the particle.

In a similar way, assessing a learner changes that learner. There are three ways learners can change during the process of assessment.

1. Every time we retrieve ideas from our memory, our ability to retrieve those ideas again is strengthened, even if we are unsuccessful in remembering the idea. Our memories are not like computers, they tend to strengthen as we revisit ideas and diminish otherwise.
2. As we attempt tasks and are successful or not successful on a task within a particular domain, we adjust our self-image within that domain. When we repeatedly fail to accomplish a task, we tend to think of ourselves as unable to be successful. When we accomplish tasks too easily, we tend to put less effort into more challenging tasks.
3. Some tasks and supports for accomplishing those tasks give us the opportunity to learn new ideas. As a result, every time we solve a new problem, we are changed a little by the experience.

I’ve often heard it said that during assessment learning stops, but it’s possible that lots of learning can be taking place during these times, depending, of course, on the nature of the assessment.

Unfortunately, this happens all too often.

There are two main ways teachers can avoid this happening in their class.

The first is through participatory engagement where activities are designed so that all students have a role in the activity. Sometimes this looks like students answering questions on individual mini-whiteboards so that for every question every student answers and at other times this looks like all students working in small groups on group-sized whiteboards (see non-permanent vertical surfaces).

The second is by utilizing instructional routines that embed formative assessment and strategies for supporting the learning and engagement of all students.

In both cases, the key idea is that in order to prevent some students from not getting on the plane, the teacher needs insight into what every student is learning.