I'm facilitating a pair of workshops this weekend in San Francisco, both of which are fairly self-directed workshops. In fact, it occurred to me that a motivated person or small group could probably get a lot of out of what I have constructed without my direct support. So I'm embedding them below. Feel free to use/share these resources (for non-commercial purposes). In each presentation, there is a link to the folder that holds the agenda for the workshop, and that agenda contains a link to the folder of associated resources.

Newsletter:

I've been thinking a lot recently about what knowledge is needed by mathematics teachers in order to be excellent teachers. It is clear to me that teachers of mathematics must know the mathematics they are to teach, but what else do they need to know?

Newsletter:

Newsletter:

**I was not born a technology person. **

Newsletter:

**Much of the research on formative assessment** suggests that grades are not effective as feedback because they do not provide students with actionable information they can use to move their learning forward. Comments and questions are much more useful to students when grades are not included.

Newsletter:

Formative assessment means more than just giving a quiz or an exit ticket. An assessment is only formative if the teacher (or her students) respond to the information gathered.

However coming up with an appropriate response is typically hard to do. After all, the most common finding in formative assessment is that a significant, but perhaps minority, group of students still do not understand a concept, after the teacher gave her best shot at helping students understand. No teachers save their best strategy for teaching a topic until later.

Newsletter:

Here's an approach to teaching about the relationships between the different forms of the equation of a line that is based on constructivism.

Newsletter:

This is a video of Magdalene Lampert taking about Ambitious Math Teaching. I'm sharing it mostly so I don't forget where it is.

Newsletter:

I read an important passage in Elizabeth Green's book "How to Build a Better Teacher" and decided that I had missed something important when reading about Magdalene Lampert's teaching. Below is a summary of some of the important features of her teaching as I see them. The first tweet is the thing that I had misinterpreted as students talking to justify their reasoning, which is similar but not exactly the same as students talking to **prove** their reasoning is correct.

Newsletter:

- Creating a WiiMote interactive white board at my school for under $50.
- 20 reasons not to use a one to one laptop program in your school (and some solutions)
- What is Edcamp?
- For whom are Interactive White boards Interactive?
- Forget the future: Here's the textbook I want now
- Mathematics education blogs
- There are no aha moments
- Why educators should blog: A helpful flowchart
- Eight Videos to Help Teachers Get Started Using Twitter
- 15 things kids can do instead of homework
- Paper use in schools
- Online Geogebra training
- The difference between instrumental and relational understanding
- What is The Effect of Technology Training for Teachers on Student Achievement?
- Using Google forms for a "Choose your own adventure" style story
- Why teach math?
- Ways to use technology in math class
- A Fundamental Flaw in Math Education
- A Restitution Guide to Classroom Management
- 25 Myths About Homework
- I don't know how to use a fax machine
- Migrating away from Google Reader
- The Role of Immediacy of Feedback in Student Learning
- Reflection of our course discussion about the use of technology in the classroom
- Free tools for math education

**Subscribe** to my blog

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer